4.1 Article

The evolution of the avian genome as revealed by comparative molecular cytogenetics

Journal

CYTOGENETIC AND GENOME RESEARCH
Volume 117, Issue 1-4, Pages 64-77

Publisher

KARGER
DOI: 10.1159/000103166

Keywords

-

Funding

  1. BBSRC [BB/E010652/1] Funding Source: UKRI
  2. Biotechnology and Biological Sciences Research Council [BB/E010652/1, G19438/2] Funding Source: Medline

Ask authors/readers for more resources

Birds are characterised by feathers, flight, a small genome and a very distinctive karyotype. Despite the large numbers of chromosomes, the diploid count of 2n approximate to 80 has remained remarkably constant with 63% of birds where 2n = 74-86, 24% with 2n = 66-74 and extremes of 2n = 40 and 2n = 142. Of these, the most studied is the chicken ( 2n = 78), and molecular cytogenetic probes generated from this species have been used to further understand the evolution of the avian genome. The ancestral karyotype is, it appears, very similar to that of the chicken, with chicken chromosomes 1, 2, 3, 4q, 5, 6, 7, 8, 9, 4p and Z representing the ancestral avian chromosomes 1-10 + Z; chromosome 4 being the most ancient. Avian evolution occurred primarily in three stages: the divergence of the group represented by extant ratites ( emu, ostrich etc.) from the rest; divergence of the Galloanserae ( chicken, turkey, duck, goose etc.) - the most studied group; and divergence of the 'land' and 'water' higher birds. Other than sex chromosome differentiation in the first divergence there are no specific changes associated with any of these evolutionary milestones although certain families and orders have undergone multiple fusions ( and some fissions), which has reduced their chromosome number; the Falconiformes are the best described. Most changes, overall, seem to involve chromosomes 1, 2, 4, 10 and Z where the Z changes are intrachromosomal; there are also some recurring ( convergent) events. Of these, the most puzzling involves chromosomes 4 and 10, which appear to have undergone multiple fissions and/or fusions throughout evolution - three possible hypotheses are presented to explain the findings. We conclude by speculating as to the reasons for the strange behaviour of these chromosomes as well as the role of telomeres and nuclear organisation in avian evolution. Copyright (c) 2007 S. Karger AG, Basel

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available