4.8 Article

Hypoxia-Mediated Induction of the Polyamine System Provides Opportunities for Tumor Growth Inhibition by Combined Targeting of Vascular Endothelial Growth Factor and Ornithine Decarboxylase

Journal

CANCER RESEARCH
Volume 68, Issue 22, Pages 9291-9301

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-08-2340

Keywords

-

Categories

Funding

  1. Swedish Cancer Fund
  2. Swedish Research Council
  3. Crafoordska, Gunnar Nilsson
  4. Berta Kamprad Foundations
  5. Medical Faculty and University Hospital at Lund University
  6. Swedish Society of Medicine

Ask authors/readers for more resources

Hypoxia is a hallmark of solid tumors, which may offer opportunities for targeted therapies of cancer; however, the mechanisms that link hypoxia to malignant transformation and tumor progression are not fully understood. Here, we show that up-regulation of the polyamine system promotes cancer cell survival during hypoxic stress. Hypoxia was found to induce polyamine transport and the key enzyme of polyamine biosynthesis, ornithine decarboxylase (ODC), in a variety of cancer cell lines. Increased ODC protein expression was shown in hypoxic, GLUT-1-expressing regions of tumor spheroids and experimental tumors, as well as in clinical tumor specimens. Hypoxic induction of the polyamine system was dependent on antizyme inhibitor (i.e., a key positive regulator of ODC and polyamine transport), as shown by RNA interference experiments. Interestingly, depletion of the polyamines during hypoxia resulted in increased apoptosis, which indicates an essential role of the polyamines in cancer cell adaptation to hypoxic stress. These results were supported by experiments in an in vivo glioma tumor model, showing significantly enhanced antitumor effects of the antiangiogenic, humanized anti-vascular endothelial growth factor (VEGF) antibody bevacizumab when used in combination with the well-established, irreversible inhibitor of ODC, alpha-difluoromethylornithine. Our results provide important insights into the hypoxic stress response in malignant cells and implicate combined targeting of VEGF and ODC its an alternative strategy to treat cancer disease. [Cancer Res 20080(22):9291-301]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available