4.5 Article

The comparison of two models of convective drying of shrinking materials using apple tissue as an example

Journal

DRYING TECHNOLOGY
Volume 25, Issue 7-8, Pages 1139-1147

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07373930701438428

Keywords

apple; convective drying; drying kinetics; shrinkage

Ask authors/readers for more resources

Modeling of drying of capillary-porous materials is a mathematically complex problem. It takes into consideration simultaneous heat and mass transfer inside the material with physicochemical properties changing during the drying process. Modeling of the process mentioned above consists of describing the heat and mass transfer balances by means of differential equations. Moisture diffusion coefficient as a function of moisture content and temperature of the material is a crucial parameter that controls the process. An additional problem occurs when moving boundary of the shrinking material is taken into account. In the present work, the identification of diffusion coefficient as a function of moisture content and temperature on the basis of two different models is shown. The two models include the Pakowski model (defined in the stationary coordinates) and the Kechaou model (defined in moving coordinates). Experimental data necessary to verify the models were obtained on the basis of series of tests for different boundary conditions performed on an apple tissue. During the drying process, samples of apple undergo significant volumetric shrinkage. In this article, the comparison of the two models describing the convective drying process of shrinking material is presented together with the comparison of the identified moisture diffusion coefficient.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available