4.8 Article

Radiation-induced gene translation profiles reveal tumor type and cancer-specific components

Journal

CANCER RESEARCH
Volume 68, Issue 10, Pages 3819-3826

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-08-0016

Keywords

-

Categories

Funding

  1. NCI NIH HHS [R01 CA126943, R01 CA126943-01A1, CA126943] Funding Source: Medline

Ask authors/readers for more resources

The microarray analysis of total cellular RNA is a common method used in the evaluation of radiation-induced gene expression. However, profiling the cellular transcriptome does not take into account posttranscriptional processes that affect gene expression. To better define the genes whose expression is influenced by ionizing radiation, we used polysome-bound RNA to generate gene translation profiles for a series of tumor and normal cell lines. Cell lines were exposed to 2 Gy, polysome-bound RNA isolated 6 hours later, and then subjected to microarray analysis. To identify the genes whose translation was affected by radiation, the polysome-bound RNA profiles were compared with their corresponding controls using significance analysis of microarrays (<1% false discovery rate). From the statistically significant genes identified for each cell line, hierarchical clustering was performed by average linkage measurement and Pearson's correlation metric. Ingenuity Pathway Analysis was used for distributing genes into biological networks and for evaluation of functional significance. Radiation-induced gene translation profiles clustered according to tissue of origin; the cell lines corresponding to each tissue type contained a significant number of commonly affected genes. Network analyses suggested that the biological functions associated with the genes whose translation was affected by radiation were tumor type-specific. There was also a set of genes/networks that were unique to tumor or normal cells. These results indicate that radiation-induced gene translation profiles provide a unique data set for the analysis of cellular radioresponse and suggest a framework for identifying and targeting differences in the regulation of tumor and normal cell radiosensitivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available