4.7 Article

Organic matter and concentrated nitrogen removal by shortcut nitrification and denitrification from mature municipal landfill leachate

Journal

JOURNAL OF ENVIRONMENTAL SCIENCES
Volume 19, Issue 6, Pages 647-651

Publisher

SCIENCE PRESS
DOI: 10.1016/S1001-0742(07)60108-9

Keywords

mature landfill leachate; UASB plus A/O; shortcut nitrification; carbon source

Ask authors/readers for more resources

An UASB+Anoxic/Oxic (A/O) system was introduced to treat a mature landfill leachate with low carbon-to-nitrogen ratio and high ammonia concentration. To make the best use of the biodegradable COD in the leachate, the denitrification of NOx--N in the recirculation effluent from the clarifier was carried out in the UASB. The results showed that most biodegradable organic matters were removed by the denitrification in the UASB. The NH4+-N loading rate (ALR) of A/O reactor and operational temperature was 0.28-0.60 kg NH4+-N/(m(3)center dot d) and 17-29 degrees C during experimental period, respectively. The short-cut nitrification with nitrite accumulation efficiency of 90%-99% was stabilized during the whole experiment. The NH4+-N removal efficiency varied between 90% and 100%. When ALR was less than 0.45 kg NH4+-N/(m(3)center dot d), the NH4+-N removal efficiency was more than 98%. With the influent NH4+-N of 1200-1800 mg/L, the effluent NH4+-N was less than 15 mg/L. The shortcut nitrification and denitrification can save 40% carbon source, with a highly efficient denitrification taking place in the UASB. When the ratio of the feed COD to feed NH4+-N was only 2-3, the total inorganic nitrogen (TIN) removal efficiency attained 67%-80%. Besides, the sludge samples from A/O reactor were analyzed using FISH. The FISH analysis revealed that ammonia oxidation bacteria (AOB) accounted for 4% of the total eubacterial population, whereas nitrite oxidation bacteria (NOB) accounted only for 0.2% of the total eubacterial population.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available