4.5 Review

Alzheimer's disease, oxidative stress and gammahydroxybutyrate

Journal

NEUROBIOLOGY OF AGING
Volume 28, Issue 9, Pages 1340-1360

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.neurobiolaging.2006.06.008

Keywords

Alzheimer's disease; oxidative stress; gammahydroxybutyrate; cerebral metabolic rate; sleep; hibernation

Ask authors/readers for more resources

Although the cause of Alzheimer's disease is unknown, oxidative stress, energy depletion, excitotoxicity and vascular endothelial pathology are all considered to play a part in its pathogenesis. In reaction to these adverse events, the Alzheimer brain appears to deploy a highly conserved biological response to tissue stress. Oxidative metabolism is turned down, the expression of antioxidative enzymes is increased and intermediary metabolism is shifted in the direction of the pentose phosphate shunt to promote reductive detoxification, repair and biosynthesis. Gathering evidence suggests that the release of P-amyloid and the formation of neurofibrillary tangles, the two hallmarks of Alzheimer's disease, are components of this protective response. Gammahydroxybutyrate (GHB), an endogenous short chain fatty acid, may be able to buttress this response. GHB can reduce glucose utilization, shift intermediary metabolism in the direction the pentose phosphate shunt and generate NADPH, a key cofactor in the activity of many antioxidative and reductive enzymes. GHB has been shown to spare cerebral energy utilization, block excitotoxicity and maintain vascular integrity in the face of impaired perfusion. Most important, GHB has repeatedly been shown to prevent the tissue damaging effects of oxidative stress. It may therefore be possible to utilize GHB to strengthen the brain's innate defences against the pathological processes operating in the Alzheimer brain and, in this way, stem the advance of Alzheimer's disease. (C) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available