4.4 Article

Stability of caffeic acid phenethyl ester and its fluorinated derivative in rat plasma

Journal

BIOMEDICAL CHROMATOGRAPHY
Volume 21, Issue 4, Pages 343-350

Publisher

WILEY
DOI: 10.1002/bmc.737

Keywords

caffeic acid phenethyl ester; fluorinated derivative; plasma stability; HPLC; activation energy; pharmacokinetics

Ask authors/readers for more resources

The stability of caffeic acid phenethyl ester (CAPE) and its fluorinated derivative (FCAPE) in rat plasma and conditions preventing their degradation are reported. Reverse-phase high-pressure liquid chromatography (HPLC) using taxifolin as an internal standard was applied for the quantitative determination of CAPE and FCAPE in rat plasma extracted with ethyl acetate. The assay was validated over a linear range of 0.25-10 mu g/mL plasma (r(2) > 0.9990, n = 3). No endogenous interferences were observed in the chromatographic region of interest. The limits of quantification and detection were set at 0.25 and 0.1 mu g/mL, respectively. The precision ranged from 0.7 to 13.7% for CAPE, and from 0.4 to 10.4% for FCAPE. Accuracy ranged from -2.8 to 12.4% for CAPE and from -0.6 to 6.8% for FCAPE. The stability was conducted at 4, 25 and 37 degrees C. First-order kinetics was observed for the degradation of CAPE and FCAPE. The energies of activation of CAPE and FCAPE were found to be 17.9 and 20.1 kcal/mol, respectively. Addition of 0.4% of sodium chloride and pH adjustment to 6 prevented their degradation in rat plasma for 24 h and at least one month at -20 degrees C. This study provides useful information for the future pharmacokinetic study of CAPE and FCAPE in rat. Copyright (c) 2007 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available