4.0 Article

Six-month continuous intraputamenal infusion toxicity study of recombinant methionyl human glial cell line-derived neurotrophic factor (r-metHuGDNF) in rhesus monkeys

Journal

TOXICOLOGIC PATHOLOGY
Volume 35, Issue 7, Pages 1013-1029

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/01926230701481899

Keywords

GDNF; Parkinson's disease; toxicology; toxicity; cerebellum; Purkinje cell; monkey; infusion; putamen; rhesus

Ask authors/readers for more resources

Recombinant human glial cell line-derived neurotrophic factor (r-metHuGDNF) is a potent neuronal growth and survival factor that has been considered for clinical use in the treatment of Parkinson's disease (PD). Here we present results of a 6-month toxicology study in rhesus monkeys conducted to support clinical evaluation of chronic intraputamenal infusion of r-metHuGDNF for PD. Monkeys (6-9/sex/group) were treated with 0 (vehicle), 15, 30, or 100 mu g/day r-metHuGDNF by continuous unilateral intraputamenal infusion (150 mu 1/day flow rate) for 6 months; a subset of animals (2-3/sex/group) underwent a subsequent 3-month treatment-free recovery period. Notable observations included reduced food consumption and body weight at 100 mu g/day and meningeal thickening underlying the medulla oblongata and/or overlying various spinal cord segments at 30 and 100 mu g/day. In addition, multifocal cerebellar Purkinje cell loss (with associated atrophy of the molecular layer and, in some cases, granule cell loss) was observed in 4 monkeys in the 100-mu g/day group. This cerebellar finding has not been observed in previous nonclinical studies evaluating r-metHuGDNF. The small number of affected animals precludes definitive conclusions regarding the pathogenesis of the cerebellar lesion, but the data support an association with r-metHuGDNF treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available