4.3 Article

Ejecta velocity distribution for impact cratering experiments on porous and low strength targets

Journal

PLANETARY AND SPACE SCIENCE
Volume 55, Issue 1-2, Pages 70-88

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pss.2006.05.002

Keywords

ejecta velocity; porosity; low strength; asteroid

Ask authors/readers for more resources

Impact cratering experiments on porous targets with various compressive strength ranging from similar to 0.5 to similar to 250 MPa were carried out in order to investigate the relationship between the ejecta velocity, and material strength or porosity of the target. A spherical alumina projectile (diameter similar to 1 mm) was shot perpendicularly into the target surface with velocity ranging from 1.2 to 4.5 km/s (nominal 4 km/s), using a two-stage light-gas gun. The ejecta velocity was estimated from the fall point distance of ejecta. The results show that there are in fact a large fraction of ejecta with very low velocities when the material strength of the target is small and the porosity is high. As an example, in the case of one specific target (compressive strength similar to 0.5 MPa and porosity 43%), the amount of ejecta with velocities lower than 1 m/s is about 40% of the total mass. The average velocity of the ejecta decreases with decreasing material strength or increasing the porosity of the target. Moreover, in our experiments, the ejecta velocity distributions normalized to total ejecta, mass seem to be mainly dependent on the material strength of the target, and not so greatly on the porosity. We also compare our experimental results with those of Gault et al. [1963. Spray ejected from the lunar surface by meteoroid impact. NASA Technical Note D-1767] and Housen [1992. Crater ejecta velocities for impacts on rocky bodies. LPSC XXIII, 555-556] for the ejecta velocity distribution using Housen's nondimensional scaling parameter. The ejecta velocity distributions of our experiments are lower than those of Gault et al. [1963. Spray ejected from the lunar surface by meteoroid impact. NASA Technical Note D-1767] and Housen [1992. Crater ejecta velocities for impacts on rocky bodies. LPSC XIII, 555-556]. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available