4.4 Article

Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study

Journal

DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY
Volume 54, Issue 11-13, Pages 1268-1291

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.dsr2.2007.04.010

Keywords

seeps; methane; authigenic; carbonate; continental margins

Categories

Ask authors/readers for more resources

Authigenic carbonates from five continental margin locations, the Eel River Basin, Monterey Bay, Santa Barbara Basin, the Sea of Okhotsk, and the North Sea, exhibit a wide range of mineralogical and stable isotopic compositions. These precipitates include aragonite, low- and high-Mg calcite, and dolomite. The carbon isotopic composition of carbonates varies widely, ranging from -60 parts per thousand to +26 parts per thousand, indicating complex carbon sources that include C-13-depleted microbial and thermogenic methane and residual, C-13-enriched, bicarbonate. A similarly large variability of delta O-18 values (-5.5 parts per thousand to +8.9 parts per thousand) demonstrates the geochemical complexity of these sites, with some samples pointing toward an O-18-enriched oxygen source possibly related to advection of O-18-enriched formation water or to the decomposition of gas hydrate. Samples depleted in O-18 are consistent with formation deeper in the sediment or mixing of pore fluids with meteoric water during carbonate precipitation. A wide range of isotopic and mineralogical variation in authigenic carbonate composition within individual study areas but common trends across multiple geographic areas suggest that these parameters alone are not indicative for certain tectonic or geochemical settings. Rather, the observed variations probably reflect local controls on the flux of carbon and other reduced ions, such as faults, fluid conduits, the presence or absence of gas hydrate in the sediment, and the temporal evolution of the local carbon reservoir. Areas with seafloor carbonates that indicate formation at greater depth below the sediment-water interface must have undergone uplift and erosion in the past or are still being uplifted. Consequently, the occurrence of carbonate slabs on the seafloor in areas of active hydrocarbon seepage is commonly an indicator of exhumation following carbonate precipitation in the shallow subsurface. Therefore, careful petrographic and geochemical analyses are critical components necessary for the correct interpretation of processes related to hydrocarbon seepage in continental margin environments and elsewhere. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available