4.5 Article

Role of astrocytes in estrogen-mediated neuroprotection

Journal

EXPERIMENTAL GERONTOLOGY
Volume 42, Issue 1-2, Pages 70-75

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.exger.2006.06.032

Keywords

estrogen; astrocyte; cerebral ischemia; TGF-beta

Ask authors/readers for more resources

Recent work has suggested that the ovarian steroid hormone, 17 beta-estradiol (E2), at physiological concentrations, may exert protective effects in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and acute ischemic stroke. While physiological concentrations of E2 have consistently been shown to be protective in vivo, direct protection of neurons remains controversial, suggesting that while direct protection of neurons may occur in some instances, an alternative or parallel pathway for protection may exist which could involve another cell type in the brain. In the present review, we summarize the data in support of a possible role for astrocytes in the mediation of neuroprotection by E2. We also summarize the data suggesting a non-classical estrogen receptor may underlie some of the protective effects of E2 by activating cellular signaling pathways, such as extracellular-regulated kinase (ERK) and phosphatidylinositol 3-kinase/Akt. A possible indirect pathway involving astrocytes may act in concert with the proposed direct pathway to achieve a widespread, global protection of both ER positive and negative neurons. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available