4.5 Article

Pathological role of Toll-like receptor signaling in cerebral malaria

Journal

INTERNATIONAL IMMUNOLOGY
Volume 19, Issue 1, Pages 67-79

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/intimm/dxl123

Keywords

cell trafficking; hemozoin; innate immunity; MyD88; Plasmodium

Categories

Ask authors/readers for more resources

Toll-like receptors (TLRs) recognize malaria parasites or their metabolites; however, their physiological roles in malaria infection in vivo are not fully understood. Here, we show that myeloid differentiation primary response gene 88 (MyD88)-dependent TLR signaling mediates brain pathogenesis of severe malaria infection, namely cerebral malaria (CM). A significant number of MyD88-, but not TIR domain containing adaptor-inducing IFN-beta (TRIF)-deficient or wild-type (WT) mice survived CM caused by Plasmodium berghei ANKA (PbA) infection. Although systemic parasitemia was comparable, sequestration of parasite and hemozoin load in the brain blood vessels was significantly lower in MyD88-deficient mice compared with those in TRIF-deficient or WT mice. Moreover, brain-specific pathological changes were associated with MyD88-dependent infiltration of CD8(+), CCR5(+) T cells and CD11c(+) dendritic cells, including CD11c(+), NK1.1(+) and B220(+) cells, and up-regulation of genes such as Granzyme B, Lipocalin 2, Ccl3 and Ccr5. Further studies using mice lacking various TLRs suggest that TLR2 and TLR9, but not TLR4, 5 and 7, were involved in CM. These results strongly suggest that TLR2- and/or TLR9-mediated, MyD88-dependent brain pathogenesis may play a critical role in CM, the lethal complication during PbA infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available