4.6 Article

The GAA triplet-repeat is unstable in the context of the human FXN locus and displays age-dependent expansions in cerebellum and DRG in a transgenic mouse model

Journal

HUMAN GENETICS
Volume 120, Issue 5, Pages 633-640

Publisher

SPRINGER
DOI: 10.1007/s00439-006-0249-3

Keywords

-

Funding

  1. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS047596] Funding Source: NIH RePORTER
  2. NINDS NIH HHS [R01 NS047596] Funding Source: Medline
  3. Wellcome Trust [070235] Funding Source: Medline

Ask authors/readers for more resources

Friedreich ataxia (FRDA) is caused by homozygosity for FXN alleles containing an expanded GAA triplet-repeat (GAA-TR) sequence. Patients have progressive neurodegeneration of the dorsal root ganglia (DRG) and in later stages the cerebellum may be involved. The expanded GAA-TR sequence is unstable in somatic cells in vivo, and although the mechanism of instability remains unknown, we hypothesized that age-dependent and tissue-specific somatic instability may be a determinant of the progressive pathology involving DRG and cerebellum. We show that transgenic mice containing the expanded GAA-TR sequence (190 or 82 triplets) in the context of the human FXN locus show tissue-specific and age-dependent somatic instability that is compatible with this hypothesis. Small pool PCR analysis, which allows quantitative analysis of repeat instability by assaying individual transgenes in vivo, showed age-dependent expansions specifically in the cerebellum and DRG. The (GAA)(190) allele showed some instability by 2 months, progressed at about 0.3-0.4 triplets per week, resulting in a significant number of expansions by 12 months. Repeat length was found to determine the age of onset of somatic instability, and the rate and magnitude of mutation. Given the low level of cerebellar instability seen by others in multiple transgenic mice with expanded CAG/CTG repeats, our data indicate that somatic instability of the GAA-TR sequence is likely mediated by unique tissue-specific factors. This mouse model will serve as a useful tool to delineate the mechanism(s) of disease-specific somatic instability in FRDA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available