4.4 Article

Biomarkers of Dietary Energy Restriction in Women at Increased Risk of Breast Cancer

Journal

CANCER PREVENTION RESEARCH
Volume 2, Issue 8, Pages 720-731

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1940-6207.CAPR-09-0008

Keywords

-

Categories

Funding

  1. Affymetrix GeneChips.
  2. MRC [MC_qA137293] Funding Source: UKRI
  3. Biotechnology and Biological Sciences Research Council [BB/C519038/1] Funding Source: researchfish
  4. Medical Research Council [MC_qA137293] Funding Source: researchfish

Ask authors/readers for more resources

Dietary energy restriction (DER) reduces risk of spontaneous mammary cancer in rodents. In humans, DER in premenopausal years seems to reduce risk of postmenopausal breast cancer. Markers of DER are required to develop acceptable DER regimens for breast cancer prevention. We therefore examined markers of DER in the breast, adipose tissue, and serum. Nineteen overweight or obese women at moderately increased risk of breast cancer (lifetime risk, 1 in 6 to 1 in 3) ages between 35 and 45 were randomly allocated to DER [liquid diet, 3,656 kJ/d (864 kcal/d); n = 10] or asked to continue their normal eating patterns (n = 9) for one menstrual cycle. Biopsies of the breast and abdominal fat were taken before and after the intervention. RNA was extracted from whole tissues and breast epithelium (by laser capture microdissection) and hybridized to Affymetrix GeneChips. Longitudinal plasma and urine samples were collected before and after intervention, and metabolic profiles were generated using gas chromatography-mass spectrometry. DER was associated with significant reductions in weight [-7.0 (+/- 2.3) kg] and in alterations of serum biomarkers of breast cancer risk (insulin, leptin, total and low-density lipoprotein cholesterol, and triglycerides). In both abdominal and breast tissues, as well as isolated breast epithelial cells, genes involved in glycolytic and lipid synthesis pathways (including stearoyl-CoA desaturase, fatty acid desaturase, and aldolase C) were significantly down-regulated. We conclude that reduced expressions of genes in the lipid metabolism and glycolytic pathways are detectable in breast tissue following DER, and these may represent targets for DER mimetics as effective chemoprophylactic agents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available