4.5 Article

Is plane strain a valid assumption in non-cylindrical fault-cored folds?

Journal

JOURNAL OF STRUCTURAL GEOLOGY
Volume 29, Issue 7, Pages 1229-1240

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsg.2007.03.011

Keywords

fault-cored folds; fold growth; BEM models; 3d models; plane strain; restoration; interlayer slip

Ask authors/readers for more resources

Many algorithms assume plane strain to construct, model and restore fault-cored folds. Using mechanical models that allow heterogeneous transport in three dimensions, we explore the distribution and magnitude of out-of-plane transport in plunging fault-cored anticlines and provide guidelines of where plane strain should and should not be applied. We developed a new technique of incrementing infinitesimal elastic strains to produce folds with aspect ratios similar to natural folds. Map views of displacement vectors show that in general, out-of-plane displacement is localized near the lateral fold tips. Cross-sections show that out-of-plane transport is depth dependent with out-of-plane displacement increasing toward the surface. Flexural slip surfaces compartmentalize out-of-plane transport within distinct mechanical units, with the maximum out of-plane displacement near the tops of mechanical units. Two-dimensional models with additional frictionally slipping bed contacts suggest that freely slipping contacts can approximate the deformation of many frictionally slipping contacts. We show that out-of-pldne transport is significant in the simplest non-cylindrical folds, and suggest that complex non-cylindrical structures should not be modeled using plane strain exclusively. We also show that flexural slip surfaces exert a significant control on the magnitude and structural position of out-of-plane transport in our models. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available