4.6 Article

Three-level BDDC in three dimensions

Journal

SIAM JOURNAL ON SCIENTIFIC COMPUTING
Volume 29, Issue 4, Pages 1759-1780

Publisher

SIAM PUBLICATIONS
DOI: 10.1137/050629902

Keywords

BDDC; three-level; three dimensions; domain decomposition; coarse problem; condition number; Chebyshev iteration

Ask authors/readers for more resources

Balancing domain decomposition by constraints (BDDC) methods are nonoverlapping iterative substructuring domain decomposition methods for the solution of large sparse linear algebraic systems arising from the discretization of elliptic boundary value problems. Their coarse problems are given in terms of a small number of continuity constraints for each subdomain, which are enforced across the interface. The coarse problem matrix is generated and factored by a direct solver at the beginning of the computation and it can ultimately become a bottleneck if the number of subdomains is very large. In this paper, two three-level BDDC methods are introduced for solving the coarse problem approximately for problems in three dimensions. This is an extension of previous work for the two-dimensional case. Edge constraints are considered in this work since vertex constraints alone, which work well in two dimensions, result in a noncompetitive algorithm in three dimensions. Some new technical tools are then needed in the analysis and this makes the three-dimensional case more complicated. Estimates of the condition numbers are provided for two three-level BDDC methods, and numerical experiments are also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available