4.6 Article

Separation of semiconducting single-walled carbon nanotubes by using a long-alkyl-chain benzenediazonium compound

Journal

CHEMISTRY-AN ASIAN JOURNAL
Volume 2, Issue 1, Pages 145-149

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/asia.200600279

Keywords

chemical separation chirality; micelles; nanotubes; semiconductors

Ask authors/readers for more resources

We designed and synthesized 4-dodecyloxybenzenediazonium tetrafluoroborate (1), which preferentially reacts with metallic single-walled carbon nanotubes (SWNTs) by kinetic control. We first determined the suitable experimental conditions for the preferential reaction of 1 with individually dissolved SWNTs by monitoring the decrease in absorbance for the metallic SWNT in the range of 400-650 nm in the absorption spectrum of the SWNTs. The reacted SVNTs were thoroughly rinsed with THF to obtain THF-insoluble SWNTs. The Raman spectrum of the THF-insoluble SWNTs showed a strong peak near 180 cm(-1), which corresponds to a semiconducting breathing band. The metallic breathing bands (220 cm(-1)) and Breit-Wingner-Fano (BWF) modes (1520 cm(-1)) corresponding to the metallic SWNTs were much weaker than those of the pristine SWNTs. We also confirmed that metallic peaks in the range of 400-650 nm in the absorption spectrum of THF-insoluble SWNTs that were individually dissolved in an aqueous micelle of sodium cholate were almost nondetectable. All the results indicate that. the THF-insoluble SWNTs are semiconducting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available