3.8 Article

Molecular karyotyping and chromosome length polymorphism in Cochliobolus sativus

Journal

MYCOLOGICAL RESEARCH
Volume 111, Issue -, Pages 78-86

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.mycres.2006.09.005

Keywords

Biploaris sorokiniana; chromosome numbers; chromosome transactions; karyotype; plant pathology; Pulsed Field Gel Electrophoresis

Categories

Ask authors/readers for more resources

Fungi are known to have variable genomes that can generate new virulence types capable of attacking important crop plants. To assess chromosome length polymorphisms in the barley spot blotch pathogen (Cochliobolus sativus), we analyzed the karyotypes of 16 isolates using contour-clamped homogeneous electric field (CHEF) electrophoresis. The collection of isolates studied were from diverse regions of the world (USA, Canada, Japan, Brazil, Uruguay, and Poland) and included representatives comprising the three known C. sativus pathotypes of 0, 1, and 2. Under two different running conditions, the number of CHEF bands observed ranged from 8 to 13 with a size range of 0.85 to 3.80 mega-bases (Mb). Each of the 16 isolates showed a unique banding pattern, except for two North Dakota isolates ND90Pr and ND91-Bowman, which were very similar. Single-copy DNA probes, previously assigned to each of the 15 chromosomes identified in reference isolate ND93-1, were hybridized to Southern blots of CHEF-separated chromosomes and revealed highly polymorphic chromosomes among isolates. Chromosomal rearrangements (translocations, deletions, duplications) were found in several isolates. DNA markers previously found linked to VHv1, a gene in pathotype 2 isolates conferring virulence on barley cultivar Bowman, also were used as probes in hybridizations with the CHEF blots. The results showed that the chromosome carrying the virulence gene in pathotype 2 isolates is larger than its counterpart without the gene in other isolates. This suggests that the genomic region carrying the virulence locus VHu1 is unique to pathotype 2 isolates. This study provides useful information on genome structure and divergence, which is essential for advancing our understanding of the genetics and biology of C. sativus. (c) 2006 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available