4.2 Article

ER E3 ubiquitin ligase HRD-1 and its specific partner chaperone BiP play important roles in ERAD and developmental growth in Caenorhabditis elegans

Journal

GENES TO CELLS
Volume 12, Issue 9, Pages 1063-1073

Publisher

WILEY
DOI: 10.1111/j.1365-2443.2007.01108.x

Keywords

-

Ask authors/readers for more resources

p97 (also called VCP or Cdc48p) and E3 ubiquitin ligases are the key players in retrotranslocation and ubiquitination of substrates in the endoplasmic reticulum-associated degradation (ERAD) pathways. Although their biochemical properties have been well studied, their cellular functions in development have not been revealed. Here, we investigate cellular functions of p97 and E3 ubiquitin ligases in Caenorhabditis elegans as a model organism. We found that C. elegans possesses three E3 ubiquitin ligases (named as HRD-1, HRDL-1 and MARC-6) like mammals, and that their simultaneous depletion caused extremely delayed growth. By monitoring the expression of an ER chaperone gene, it was revealed that p97 and HRD-1 play essential roles in unfolded protein response (UPR) and ERAD pathways. We further found that HRD-1 functions in concert with BiP, and that two BiP paralogues are functionally diversified. HRD-1 and BiP(HSP-3) play important roles in the developmental growth and function of intestinal cells, while HRD-1 and BiP(HSP-4) in the gonad formation. We propose that E3 ubiquitin ligases function in concert with a specific partner chaperone.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available