4.8 Article

Effect of phosphate functional groups on the calcification capacity of acrylic hydrogels

Journal

ACTA BIOMATERIALIA
Volume 3, Issue 1, Pages 95-102

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2006.07.011

Keywords

calcium phosphate phases; calcification; phosphate groups; HEMA-based hydrogels; implantation

Ask authors/readers for more resources

The incorporation of negatively charged groups into the structure of synthetic polymers is frequently advocated as a method for enhancing their calcification capacity required in orthopedic and dental applications. However, the results reported by various research groups are rather contentious, since inhibitory effects have also been observed in some studies. In the present study, phosphate groups were introduced in poly(2-hydroxyethyl methacrylate) (PHEMA) by copolymerization with 10% mol of either mono(2-acryloyloxyethyl) phosphate (MAEP) or mono(2-methaeryloyloxyethyl) phosphate (MMEP). Incubation of these hydrogels for determined durations (1-9 weeks) in a simulated body fluid (SBF) solution induced deposition of calcium phosphate (CaP) deposits of whitlockite type. After 9 weeks, the amount of calcium deposited on the phosphate-containing polymers was four times lower than that found on PHEMA, as determined by X-ray photoelectron spectroscopy (XPS). Samples of copolymer HEMA-MAEP were implanted subcutaneously in rats and evaluated after 9 weeks. No CaP deposits could be detected on the copolymer by XPS or energy dispersive X-ray spectroscopy, while PHEMA samples were massively calcified. It was concluded that the presence of phosphate groups decreased the calcification capacity of the hydrogels, and that in the conditions of this study, the phosphate groups had an inhibitory effect on the deposition of CaP phases on HEMA-based hydrogels. (C) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available