4.7 Article

Finite element-based probabilistic analysis tool for orthopaedic applications

Journal

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE
Volume 85, Issue 1, Pages 32-40

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cmpb.2006.09.013

Keywords

probabilistic modeling; reliability; sensitivity; variability; orthopaedic implants; finite element modeling

Ask authors/readers for more resources

Orthopaedic implants, as well as other physical systems, contain inherent variability in geometry, material properties, component alignment, and loading conditions. While complex, deterministic finite element (FE) models do not account for the potential impact of variability on performance, probabilistic studies have typically predicted behavior from simplified FE models to achieve practical solution times. The objective of this research was to develop an efficient and versatile probabilistic FE tool to quantify the effect of uncertainty in the design variables on the performance of orthopaedic components under relevant conditions. Key aspects of the computational tool developed include parametric and automated FE model creation for changes in dimensional variables, efficient solution using the advanced mean-value (AMV) reliability method, and identification of the most significant design variables. Two orthopaedic applications are presented to demonstrate the ability of the computational tool to efficiently and accurately represent component performance. (c) 2006 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available