4.7 Article

HS-116, a novel phosphatidylinositol 3-kinase inhibitor induces apoptosis and suppresses angiogenesis of hepatocellular carcinoma through inhibition of the PI3K/AKT/mTOR pathway

Journal

CANCER LETTERS
Volume 316, Issue 2, Pages 187-195

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.canlet.2011.10.037

Keywords

PI3K; Apoptosis; Angiogenesis; HCC

Categories

Funding

  1. Korean Health Technology RD Project [A101185]
  2. Ministry of Health Welfare [1020250]
  3. National Research Foundation of Korea (NRF)
  4. Ministry of Education, Science and Technology [NRF 2011-0005255, 0003609, 0016436, 0020322]
  5. Korea Health Promotion Institute [A101185] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

The phosphatidylinositol 3-kinase (PI3K) pathway plays a central role in cell proliferation and survival of human cancers. As PI3K is active in many cancer patients, resulting in cancer development and progression, we developed an azaindole derivative, HS-116 as a novel PI3K inhibitor. This study aimed to clarify the anticancer effect of HS-116 in human hepatocellular carcinoma (HCC). To identify the effect of HS-116 on HCC cells, a PI3K assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (KIT) assay, flow cytometry, and Western blotting were conducted. IC50 of HS-116 for PI3K alpha was 31 nM, and it effectively suppressed the phosphorylation of PI3K downstream factors such as AKT, mTOR, p70S6K, and 4EBP1. Also, HS-116 induced apoptosis by increasing the proportion of sub-G1 apoptotic cells from 1.8% to 35% and increasing the expressions of Bax, cleaved-caspase-3, and cleaved-PARP as well as decreasing the expression of Bcl-2. In addition, chromatin condensation and apoptotic bodies were detected in HS-116-treated HCC cells. Furthermore, HS-116 decreased protein expression of hypoxia-inducible factor-1 alpha (HIF-1 alpha) and vascular endothelial growth factor (VEGF), and inhibited the tube formation and migration of human umbilical vein endothelial cells (HUVECs). In vivo, the ability of mice to vascularize subcutaneously implanted Matrigel plugs was diminished when the mice were treated with HS-116. These results show that HS-116 inhibits the PI3K/AKT/mTOR pathway via apoptosis and anti-angiogenesis in HCC cells. We suggest that HS-116 may be an effective novel therapeutic candidate against HCC. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available