4.3 Article

Selective removal of organochlorine pesticides (OCPs) from aqueous solution by triolein-embedded composite adsorbent

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/03601230601020845

Keywords

adsorption; triolein; activated carbon; organochlorine pesticides (OCPs); octanol-water partition coefficient (log K-ow)

Ask authors/readers for more resources

A novel composite adsorbent (CA-T) was used for the selective removal of organochlorine pesticides (OCPs) from aqueous solution. The adsorbent was composed of the supporting activated carbon and the surrounding triolein-embedded cellulose acetate membrane. Scanning electron microscopy (SEM), N-2 adsorption isotherms and fluorescence methods were used to characterize the physicochemical properties of CA-T. Triolein was perfectly embedded in the cellulose acetate membrane and deposited on the surface of activated carbon. The adsorbent was stable in water and no triolein leakage was detected during the test periods. Some organochlorine pesticides (OCPs), such as dieldrin, endrin, aldrin, and heptachlor epoxide, were used as model contaminants and removed by CA-T in laboratory batch experiments. The adsorption isotherm followed the Freundlich equation and the kinetic data fitted well to the pseudo-second-order reaction model. Results also indicated that CA-T appeared to be a promising adsorbent with good selectivity and satisfactory removal rate for lipophilic OCPs from aqueous solutions when present in trace amounts. The adsorption rate and removal efficiency for lipophilic OCPs were positively related to their octanol-water partition coefficients (log K-ow). Lower residual concentrations of OCPs were achieved when compared to granular activated carbon (GAC).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available