4.3 Article

Restricted gene flow in the Caribbean staghorn coral Acropora cervicomis: Implications for the recovery of endangered reefs

Journal

JOURNAL OF HEREDITY
Volume 98, Issue 1, Pages 40-50

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/jhered/esl057

Keywords

-

Ask authors/readers for more resources

Coral reef conservation requires information about the distance over which healthy reefs can rescue damaged reefs through input of coral larvae. This information is desperately needed in the Caribbean where the 2 dominant shallow water corals Acropora cervicornis and Acropora palmata have suffered unprecedented declines. Here we compare the population genetic structure in the staghorn coral A. cervicornis across the greater Caribbean using DNA sequence data from 1 mitochondrial and 3 nuclear genes. Data from 160 individuals from 22 populations and 9 regions show that A. cervicornis exhibits significant population genetic structure across the greater Caribbean in both the mitochondrial (Phi(st) = 0.130) and nuclear data (Phi(st) = 0.067). The highest population structure was observed in the species' own, native mtDNA haplotypes (Phi(st) = 0.235). Introgressed alleles from A. palmata tempered higher population structure in A. cervicornis over regional scales but in some cases generated highly localized introgression hot spots and fine-scale genetic structure among reefs separated by as few as 2 km. These data show that larval dispersal over moderate or long distances (> 500 km) is limited for this threatened species and in some cases locally limited as well. Thus, the endangered Caribbean staghorn corals require local source populations for their recovery and targeted conservation efforts over spatial scales much smaller than the hundreds to thousands of kilometers usually proposed for marine reserves.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available