4.3 Article

Atomic geometry and energetics of carbon nanotube necking

Journal

PHILOSOPHICAL MAGAZINE LETTERS
Volume 87, Issue 8, Pages 567-574

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/09500830701370799

Keywords

-

Ask authors/readers for more resources

Molecular mechanics simulations were performed to probe the incipient plastic deformation in carbon nanotubes (CNTs), which involves nucleation of Stone-Wales (SW) defects and spiral glide of 5/7 dislocation dipoles that lead to quantized necking through a stepwise reduction in tube diameter. Quantification of the strain-dependent energetics of dislocation glide reveals that such dislocation motions are energetically favoured at high tensile strain. Pre-existing dislocations critically affect subsequent nucleation and separation of SW defects, as manifested by the competing deformation modes of symmetric versus asymmetric necking. The results provide a quantitative basis for the dislocation dynamics simulations of superplastically deformed CNTs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available