4.6 Article

Experimental and theoretical study of a cone-jet for an electrospray microthruster considering the interference effect in an array of nozzles

Journal

JOURNAL OF AEROSOL SCIENCE
Volume 38, Issue 9, Pages 924-934

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jaerosci.2007.07.003

Keywords

electrospray; operating voltage; electrostatic interference; microthruster

Ask authors/readers for more resources

The interference effect on an array of electrospray emitters is analytically and experimentally investigated. An analytical model is presented to predict the behavior of the operating voltage with respect to emitter spacing in an array of emitters. The basic idea of these models is to superimpose the electric potential of individual emitters together in an array of emitters. If only one of the emitters operates and no liquid is supplied through the neighboring emitters, the potential required to form a stable cone-jet Generally increases as the emitters move closer to each other due to electrical shielding. However, at very close spacing the required potential decreases. If all the emitters operate simultaneously, the operating voltage required for cone-jet spraying increases as the emitter spacing decreases: furthermore, there is no decrease in potential when the spacing is very close. The results of the analytical electrostatic interference model agree well with the experimental data. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available