4.3 Review

Stretching and immobilization of DNA for studies of protein-DNA interactions at the single-molecule level

Journal

NANOSCALE RESEARCH LETTERS
Volume 2, Issue 4, Pages 185-201

Publisher

SPRINGEROPEN
DOI: 10.1007/s11671-007-9057-5

Keywords

dNA; single-molecule; proteins; DNA-protein interactions

Ask authors/readers for more resources

Single-molecule studies of the interactions of DNA and proteins are important in a variety of biological or biotechnology processes ranging from the protein's search for its DNA target site, DNA replication, transcription, or repair, and genome sequencing. A critical requirement for single-molecule studies is the stretching and immobilization of otherwise randomly coiled DNA molecules. Several methods for doing so have been developed over the last two decades, including the use of forces derived from light, magnetic and electric fields, and hydrodynamic flow. Here we review the immobilization and stretching mechanisms for several of these techniques along with examples of single-molecule DNA-protein interaction assays that can be performed with each of them.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available