4.3 Article

Phenolic acclimation to ultraviolet-A irradiation in Eucalyptus nitens seedlings raised across a nutrient environment gradient

Journal

PHOTOSYNTHETICA
Volume 45, Issue 1, Pages 36-42

Publisher

ACAD SCIENCES CZECH REPUBLIC, INST EXPERIMENTAL BOTANY
DOI: 10.1007/s11099-007-0006-4

Keywords

carotenoids; chlorophyll; flavonol; fluorescence induction; gallotanins; nitrogen; stilbene; xanthophyll cycle

Categories

Ask authors/readers for more resources

We investigated the effects of long-term acclimation of Eucalyptus nitens seedlings to ultraviolet-A (UV-A) irradiation (320-400 nm) on phenolic compounds (gallotannins, stilbenes, and flavonols), photochemical efficiency, and chlorophyll and carotenoid contents. Seedlings were raised under four nutrient regimes, ranging from low to high application rates, in an environment that included or excluded UV-A irradiance. Our aims were: to classify phenolic compounds that absorb in the UV-A and their relative contribution to total UV-A absorption; to identify how phenolic compounds respond to UV-A exposure and exclusion, and to determine how plant nutrient, status affects acclimation of photo- and pigment-chemistry to UV-A exposure and exclusion. Gallotannins contributed to only a minor fraction of total absorption within the lower range (320-360 nm) of the UV-A spectrum. Stilbene and flavonol compounds dominated absorption within the 320-360 and 360-400 nm ranges, respectively. Contents of gallotannin were generally high in UV-A-exposed seedlings. Although there was a significant effect of UV-A on contents of stilbenes, a general response (across nutrient treatment comparisons) was not evident. Contents of flavonols were not affected by UV-A exposure. Contents of gallotannin, stilbene, and flavonols decreased from low to high nutrient-application treatments. There were no effects of UV-A on photochemical efficiency or pigment-chemistry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available