4.7 Article

Characterization of carbon nanotube/nanofiber-reinforced polymer composites using an instrumented indentation technique

Journal

COMPOSITES PART B-ENGINEERING
Volume 38, Issue 1, Pages 58-65

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2006.04.002

Keywords

nano-structures; mechanical properties; carbon nanofiber

Ask authors/readers for more resources

An instrumented indentation technique was tested on three types of carbon nanotube/nanofiber-reinforced composites to investigate its applicability for measuring mechanical properties (elastic modulus and hardness). There was good agreement in the measured elastic modulus between the instrumented indentation and uniaxial tension tests for the case of a nanocomposite with a harder epoxy matrix material. In contrast, there was a considerable difference in elastic modulus between the two tests for the case of a nanocomposite with a softer polystyrene matrix material. A modified area function was then developed for the nanocomposite with the softer polystyrene matrix material, and this eliminated the difference in elastic modulus between the two test techniques. Thus, the instrumented indentation technique can be used for evaluating the mechanical properties of polymer matrix nanocomposites with an added advantage that a small sample size can be used. The instrumented indentation test was also utilized in the case of a patterned nanotube array-reinforced epoxy matrix composite. This clearly showed the modulus of the array nanocomposite improved considerably compared to that of the neat epoxy resin. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available