4.5 Article

Robust mean-covariance solutions for stochastic optimization

Journal

OPERATIONS RESEARCH
Volume 55, Issue 1, Pages 98-112

Publisher

INFORMS
DOI: 10.1287/opre.1060.0353

Keywords

-

Ask authors/readers for more resources

We provide a method for deriving robust solutions to certain stochastic optimization problems, based on mean-covariance information about the distributions underlying the uncertain vector of returns. We prove that for a general class of objective functions, the robust solutions amount to solving a certain deterministic parametric quadratic program. We first prove a general projection property for multivariate distributions with given means and covariances, which reduces our problem to optimizing a univariate mean-variance robust objective. This allows us to use known univariate results in the multidimensional setting, and to add new results in this direction. In particular, we characterize a general class of objective functions (the so-called one- or two-point support functions), for which the robust objective is reduced to a deterministic optimization problem in one variable. Finally, we adapt a result from Geoffrion (1967a) to reduce the main problem to a parametric quadratic program. In particular, our results are true for increasing concave utilities with convex or concave-convex derivatives. Closed-form solutions are obtained for special discontinuous criteria, motivated by bonus- and commission-based incentive schemes for portfolio management. We also investigate a multiproduct pricing application, which motivates extensions of our results for the case of nonnegative and decision-dependent returns.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available