3.9 Article

Selective creation of thermal injury zones in the superficial musculoaponeurotic system using intense ultrasound therapy - A new target for noninvasive facial rejuvenation

Journal

ARCHIVES OF FACIAL PLASTIC SURGERY
Volume 9, Issue 1, Pages 22-29

Publisher

AMER MEDICAL ASSOC
DOI: 10.1001/archfaci.9.1.22

Keywords

-

Categories

Ask authors/readers for more resources

Objectives: To transcutaneously deliver intense ultrasound (IUS) energy to target the facial superficial musculoaponeurotic system (SMAS), to produce discrete thermal injury zones (TIZs) in the SMAS, and to demonstrate the relative sparing of adjacent nontargeted layers superficial and deep to the SMAS layer. Methods: In 6 unfixed human cadaveric specimens, the SMAS layer was visualized and targeted using the ultrasound imaging component of the IUS device. Using 2 IUS handpieces, 202 exposure lines were delivered bilaterally in multiple facial regions by varying combinations of power and exposure time (0.5-8.0 J). Tissue was then excised and examined grossly and histologically for evidence of thermal injury using nitroblue tetrazolium chloride viability stain. Results: Reproducible TIZs were produced selectively in the SMAS at depths of up to 7.8 mm, and sparing of surrounding tissue including the epidermis. Higher energy settings and high-density exposure line pattern produced a greater degree of tissue shrinkage. Conclusions: In human cadaveric facial tissue, IUS can noninvasively target and selectively produce TIZs of reproducible location, size, and geometry in the SMAS layer. The ability to produce focused thermal collagen denaturation in the SMAS to induce shrinkage and tissue tightening has not been previously reported and has significant implications for aesthetic facial rejuvenation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available