4.7 Article

Distinct molecular mechanisms leading to deficient expression of ER-resident aminopeptidases in melanoma

Journal

CANCER IMMUNOLOGY IMMUNOTHERAPY
Volume 59, Issue 8, Pages 1273-1284

Publisher

SPRINGER
DOI: 10.1007/s00262-010-0856-7

Keywords

ERAP; Tumour; Structural alterations; Regulation; Immune escape

Funding

  1. Deutsche Forschungsgemeinschaft [DFG SE 581/9-2]
  2. Sonderforschungsbereich [SFB490, TP E6, Z3]

Ask authors/readers for more resources

Immune surveillance of tumour cells by CD8(+) cytotoxic T cells plays a key role in the establishment and control of an anti-tumour response. This process requires the generation of antigenic peptides, which are largely produced by the proteasome in combination with other proteases located in either the cytoplasm and/or the endoplasmic reticulum (ER). The ER-resident aminopeptidases ERAP1 and ERAP2 trim or even destroy HLA class I-binding peptides thereby shaping the peptide repertoire presented for T cell recognition. So far there exists limited information about the expression pattern of ERAP1 and/or ERAP2 in human tumours of distinct histotypes. Therefore, the expression profiles and modes of regulation of both aminopeptidases were determined in a large series of melanoma cell lines. A heterogeneous expression ranging from high to reduced or even total loss of ERAP1 and/or ERAP2 mRNA and/or protein expression was detected, which often could be induced/upregulated by interferon-gamma treatment. The observed altered ERAP1 and/or ERAP2 expression and activity levels were either mediated by sequence alterations affecting the promoter or enzymatic activities, leading to either transcriptional and/or post-transcriptional downregulation mechanisms or limited or excessive processing activities, which both might have an impact on the antigenic peptide repertoire presented on HLA class I molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available