4.7 Article

Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy

Journal

CANCER IMMUNOLOGY IMMUNOTHERAPY
Volume 58, Issue 8, Pages 1219-1228

Publisher

SPRINGER
DOI: 10.1007/s00262-008-0628-9

Keywords

Tumor immunity; Regulatory CD4(+) T cells; Chemotherapy; Mesothelioma; Gemcitabine; Cyclophosphamide

Funding

  1. National Health and Medical Research Council of Australia

Ask authors/readers for more resources

Tumor cell death potentially engages with the immune system. However, the efficacy of anti-tumor chemotherapy may be limited by tumor-driven immunosuppression, e.g., through CD25(+) regulatory T cells. We addressed this question in a mouse model of mesothelioma by depleting or reconstituting CD25(+) regulatory T cells in combination with two different chemotherapeutic drugs. We found that the efficacy of cyclophosphamide to eradicate established tumors, which has been linked to regulatory T cell depletion, was negated by adoptive transfer of CD25(+) regulatory T cells. Analysis of post-chemotherapy regulatory T cell populations revealed that cyclophosphamide depleted cycling (Ki-67(hi)) T cells, including foxp3(+) regulatory CD4(+) T cells. Ki-67(hi) CD4(+) T cells expressed increased levels of two markers, TNFR2 and ICOS, that have been associated with a maximally suppressive phenotype according to recently published studies. This suggest that cyclophosphamide depletes a population of maximally suppressive regulatory T cells, which may explain its superior anti-tumor efficacy in our model. Our data suggest that regulatory T cell depletion could be used to improve the efficacy of anti-cancer chemotherapy regimens. Indeed, we observed that the drug gemcitabine, which does not deplete cycling regulatory T cells, eradicates established tumors in mice only when CD25(+) CD4(+) T cells are concurrently depleted. Cyclophosphamide could be used to achieve regulatory T cell depletion in combination with chemotherapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available