4.7 Review

The physics of living neural networks

Journal

PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS
Volume 449, Issue 1-3, Pages 54-76

Publisher

ELSEVIER
DOI: 10.1016/j.physrep.2007.02.014

Keywords

complex systems; neuroscience; neural networks; transport of information; neural connectivity; percolation

Ask authors/readers for more resources

Improvements in technique in conjunction with an evolution of the theoretical and conceptual approach to neuronal networks provide a new perspective on living neurons in culture. Organization and connectivity are being measured quantitatively along with other physical quantities such as information, and are being related to function. In this review we first discuss some of these advances, which enable elucidation of structural aspects. We then discuss two recent experimental models that yield some conceptual simplicity. A one-dimensional network enables precise quantitative comparison to analytic models, for example of propagation and information transport. A two-dimensional percolating network gives quantitative information on connectivity of cultured neurons. The physical quantities that emerge as essential characteristics of the network in vitro are propagation speeds, synaptic transmission, information creation and capacity. Potential application to neuronal devices is discussed. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available