4.7 Article Proceedings Paper

Decentralized multi-objective bilevel decision making with fuzzy demands

Journal

KNOWLEDGE-BASED SYSTEMS
Volume 20, Issue 5, Pages 495-507

Publisher

ELSEVIER
DOI: 10.1016/j.knosys.2007.01.003

Keywords

bilevel programming; branch-and-bound algorithm; fuzzy sets; optimization; multi-objective decision making; fuzzy bilevel programming

Ask authors/readers for more resources

Decisions in a decentralized organization often involve two levels. The leader at the upper level attempts to optimize his/her objective but is affected by the follower; the follower at the lower level tries to find an optimized strategy according to each of possible decisions made by the leader. When model a real-world bilevel decision problem, it also may involve fuzzy demands which appear either in the parameters of objective functions or constraints of the leader or the follower or both. Furthermore, the leader and the follower may have multiple conflict objectives that should be optimized simultaneously in achieving a solution. This study addresses both fuzzy demands and multi-objective issues and propose a fuzzy multi-objective bilevel programming model. It then develops an approximation branch-and-bound algorithm to solve multi-objective bilevel decision problems with fuzzy demands. Finally, two case-based examples further illustrate the proposed model and algorithm. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available