4.3 Review

Intercellular and intracellular signaling pathways mediating ionizing radiation-induced bystander effects

Journal

JOURNAL OF RADIATION RESEARCH
Volume 48, Issue 2, Pages 87-95

Publisher

OXFORD UNIV PRESS
DOI: 10.1269/jrr.06084

Keywords

ionizing radiation; bystander effects; signaling pathways; plasma membrane; radiotherapy

Ask authors/readers for more resources

Ionizing radiation/Bystander effects/Signaling pathways/Plasma membrane/Radiotherapy. A rapidly growing body of experimental evidence indicates that ionizing radiation induces biological effects in non-irradiated bystander cells that have received signals from adjacent or distant irradiated cells. This phenomenon, which has been termed the ionizing radiation-induced bystander effect, challenges the long-standing paradigm that radiation traversal through the nucleus of a cell is a prerequisite to elicit genetic damage or a biological response. Bystander effects have been observed in a number of experimental systems, and cells whose nucleus or cytoplasm is irradiated exert bystander responses. Bystander cells manifest a multitude of biological consequences, such as genetic and epigenetic changes, alterations in gene expression, activation of signal transduction pathways, and delayed effects in their progeny. Several mediating mechanisms have been proposed. These involve gap junction-mediated intercellular communication, secreted soluble factors, oxidative metabolism, plasma membrane-bound lipid rafts, and calcium fluxes. This paper reviews briefly the current knowledge of the bystander effect with a focus on proposed mechanisms. The potential benefit of bystander effects to cancer radiotherapy will also be discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available