3.8 Article

Gain at chromosomal region 5p15.33, containing TERT, is the most frequent genetic event in early stages of non-small cell lung cancer

Journal

CANCER GENETICS AND CYTOGENETICS
Volume 182, Issue 1, Pages 1-11

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cancergencyto.2007.12.004

Keywords

-

Funding

  1. National Research Foundation of Korea [전06A1115] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Chromosomal imbalances resulting in altered gene dosage play a role in the molecular pathogenesis of non-small cell lung cancer (NSCLC), but the target genes remain to be identified. To identify early-stage genetic events that drive progression of NSCLC, we conducted a high-resolution array comparative genomic hybridization (CGH) study, using an array of 4,046 bacterial artificial chromosome clones to screen for DNA copy number changes associated with individual genes in 36 tumors obtained from patients in early stages of NSCLC. Multiple early genetic events occurring on chromosome 5p were identified, with a minimal detection region at 5p15.33 similar to 12. The most frequent finding involved gain of 5p15.33, observed in 15 of 19 stage I (A+B) cancers (79%) and in 28 of the total 36 NSCLC cases (78%). This locus harbors the genes TERT, SLC6A19, and SLC6A18 and is a telomeric boundary at bacterial artificial chromosome (BAC) clone 91_J20. Other potential candidate genes evidencing high numbers of genomic copy number changes (>= 40% of patients) included the following genes, encountered in >50% of 19 stage I (A+B) cancers: CEP72 and TPPP (14 of 19; 74%); AHRR, EXOC3 (previously SEC6L1), SLC9A3, LOC442126, ZDHHC11, BRD9, and TRIP13 (13/19; 68%); and CLPTM1L (alias CRR9), SLC6A3 (previously DAT1), and LOC401169 (10/19; 53%). Huorescence in situ hybridization validated the array CGH findings. The gain of 5p15.33 is thus one of the most consistent alterations in the early stages of lung cancer, and a series of genes in the critical 5pl5.33 region may be used as novel biomarkers for the early detection and classification of lung cancer. (C) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available