4.4 Article Proceedings Paper

Role of glycogen synthase kinase-3 in cell fate and epithelial-mesenchymal transitions

Journal

CELLS TISSUES ORGANS
Volume 185, Issue 1-3, Pages 73-84

Publisher

KARGER
DOI: 10.1159/000101306

Keywords

epithelial-mesenchymal transition; glycogen synthase kinase-3; snail; wnt; beta-catenin; E-cadherin; cancer

Ask authors/readers for more resources

Epithelial cells usually exist as sheets of immotile, tightly packed, well-coupled, polarized cells with distinct apical, basal and lateral surfaces. Remarkably, these cells can dramatically alter their morphology to become motile, fibro-blast-like mesenchymal cells in a process of epithelial- mesenchymal transition (EMT). This process and the reverse, mesenchymal- epithelial transition, occur repeatedly during normal embryonic development. A phenomenon similar to physiological EMT occurs during the pathophysiological progression of some cancers. Tumours of epithelial origin, as they transform to malignancy, appear to exploit the innate plasticity of epithelial cells, with EMT conferring increased invasiveness and metastatic potential. Key to the maintenance of epithelial cell identity is the expression of E- cadherin, a protein that is required for tight intercellular adhesion along the lateral surfaces of adjacent epithelial cells. Loss of functional E-cadherin is a critical event in EMT. An important regulator of E-cadherin expression is the protein Snail, a zinc-finger transcriptional repressor. Snail contains several consensus sites for the kinase, glycogen synthase kinase-3 (GSK-3), and accumulating evidence indicates that it is a GSK-3 substrate. Phosphorylation of Snail by GSK-3 facilitates its proteasomal degradation. Conversely, inhibition of GSK-3 leads to Snail accumulation, E-cadherin down-regulation, and development of EMT in cultured epithelial cells. Several signalling pathways implicated in the progression of EMT, including the Wnt and phosphoinositide 3-kinase pathways, use GSK-3 to mediate their responses. In these pathways, GSK-3's regulation of other transcriptional effectors like beta-catenin works in concert with changes in Snail to orchestrate the EMT process. This review focuses on the emerging role of GSK-3 as a modulator of cell fate and EMT in the contexts of development, in vitro cell culture and cancer. Copyright (c) 2007 S. Karger AG, Basel.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available