4.7 Article

Comparison of permeability of poly(allylamine hydrochloride)/and poly(diallyldimethylammonium chloride)/poly(4-styrenesulfonate) multilayer films: Linear vs. exponential growth

Journal

JOURNAL OF ELECTROANALYTICAL CHEMISTRY
Volume 738, Issue -, Pages 195-202

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jelechem.2014.11.035

Keywords

Polyelectrolytes; Electrochemical impedance spectroscopy; Multi layer films; Ellipsometry; Diffusion coefficient

Funding

  1. National Science Centre grant [UMO-2011/01/D/5T5/04913]
  2. Ministry of Science and Higher Education
  3. COST Action [CM1101]

Ask authors/readers for more resources

The ability to form highly tailored polymer thin films with various functional groups or nanoobjects incorporated in the film structure is the main reason of a popularity of the Layer-by-Layer method. In the present paper we concentrated on the formation and permeability of multilayer polyelectrolyte films exhibiting various growth regimes, linear and exponential. Films were formed of two model pairs of polyelectrolytes: poly(allylamine hydrochloride)/poly(4-styrenesulfonate) (PAH/PSS) and poly(diallyl-dimethylammonium chloride)/poly(4-styrenesulfonate) (PDADMAC/PSS) at various ionic strengths of polyelectrolyte solutions. Quartz crystal microbalance with dissipation (QCM-D) was used to determine the films' mass and viscoelastic properties in situ. The results concerning the films growth were compared with the thickness in dry state measured by ellipsometry. The Electrochemical Impedance Spectroscopy (EIS) with the redox couple potassium hexacyanoferrate (II) and (III) was used to determine the electrochemical impedance of films deposited at gold rotating disk electrode (ROE). The measurements showed that the obtained ellipsometric thickness, mass and resistance of multilayer films depended on the number of deposited polyelectrolyte layers and the ionic strength of PE solutions. However, PAH/PSS films formed at high ionic strength, exhibiting linear growth had much higher impedance than much thicker PDADMAC/PSS films with the exponential growth. We attributed that effect to the more spongy structure of exponentially growing films, containing more water. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available