4.4 Article

The effects of flooding on several hybrid poplar clones in Northern China

Journal

AGROFORESTRY SYSTEMS
Volume 69, Issue 1, Pages 77-88

Publisher

SPRINGER
DOI: 10.1007/s10457-006-9019-4

Keywords

biomass allocation; flooding; flood tolerance; leaf gas exchange; photosynthesis; Populus

Ask authors/readers for more resources

The ecophysiological, morphological, and growth characteristics of 14 poplar clones were studied during 37 days of flooding and a 13-day recovery period. Cuttings were subjected to three soil water regimes, viz. drained (control), shallow flooding to 10 cm above the soil, and deep flooding to a depth of 120 cm. All hybrids modified their ecophysiological and morphological patterns to decrease carbon loss and maintain water balance. In response to flooding, all 14 hybrids reduced their expansion and initiation of new leaves, reduced height and root collar growth, and reduced the number of leaves. For shallowly flooded plants, adventitious roots developed by day 14, and their number increased with flooding duration; net photosynthesis, stomatal conductance, and growth decreased significantly compared with the control; dry weights of roots, leaves, and total biomass decreased and the allocation of growth to shoots and roots changed. After flooding ended, net photosynthesis recovered, but stomatal conductance recovered before net CO2 assimilation since photosynthesis was limited by stomatal factor at the initial stage of stress and it was limited by non-stomatal factors over relatively long periods of stress. Transpiration and the amount of water obtained from the roots both decreased. In the deeply flooded plants, similar but often more severe changes were observed. Based on our results, we classified the hybrids into three types using hierarchical cluster analysis. Clones 15-29, 196-522, 184-411, 306-45, 59-289, DN-2, DN-182, DN-17, DN-14274, NE-222, DTAC-7, and R-270 were flood-tolerant, clone NM-6 was flood-susceptible, and clone 328-162 was moderately flood-tolerant.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available