4.3 Article

Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites

Journal

COMPOSITE INTERFACES
Volume 14, Issue 7-9, Pages 753-762

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1163/156855407782106573

Keywords

natural fibre; surface modification; bacterial cellulose; truly green composites; fibre reinforced nanocomposites

Ask authors/readers for more resources

One of the main problems in fabricating natural fibre reinforced polymers is the poor adhesion between intrinsically polar plant fibres and non-polar polymer matrices. We have developed a truly green technique of modifying natural fibre (hemp and sisal) surfaces to improve the interaction between the fibres and polymers by attaching nano-scale bacterial cellulose to the fibre surfaces. These modified natural fibres were then incorporated into the renewable polymers cellulose acetate butyrate (CAB) and poly-L-lactic acid (PLLA). Unidirectional natural fibre reinforced composites were manufactured to investigate the impact of the surface modification on the fibre and interface dominated composite properties. Both the tensile strength parallel as well as perpendicular to the fibres of the composites reinforced by bacterial cellulose modified natural fibres were found to increase significantly, especially in the case of a PLLA matrix. In case of modified sisal reinforced PLLA the parallel strength increases by 44% and the off-axis composite strength by 68%. Scanning electron microscopy observations of the composite fracture surfaces confirm the improved interaction between the fibre and the polymer matrix.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available