4.5 Article

Polymeric micelles of zinc protoporphyrin for tumor targeted delivery based on EPR effect and singlet oxygen generation

Journal

JOURNAL OF DRUG TARGETING
Volume 15, Issue 7-8, Pages 496-506

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10611860701498252

Keywords

photodynamic therapy; zinc protoporphyrin; styrene maleic acid copolymer; polyethylene glycol; antitumor effect; heme oxygenase-1

Ask authors/readers for more resources

Polymeric micelles of zinc protoporphyrin (ZnPP) with water soluble biocompatible and amphiphilic polymer, polyethylene glycol (PEG) demonstrated unique characteristics to target tumor tissues selectively based on the enhanced permeability and retention (EPR) effect. The micellar macromolecular drug of ZnPP (SMA-ZnPP and PEG-ZnPP) previously showed notable anticancer activity as a consequence of selective tumor targeting ability and its potent HO-1 inhibitory potential, resulting in suppressed biliverclin/bilirubin production in tumors thereby leading to oxystress induced tumor cell killing. Furthermore, recent findings also showed that ZnPP efficiently generated reactive singlet oxygen under illumination of visible light, laser, or xenon light source, which could augment its oxystress induced cell killing abilities. In the present paper, we report the synergistic effects of light induced photosensitizing capabilities and HO-1 inhibitory potentials of these unique micelles when tested in vitro and in vivo on tumor models under localized, mild illumination conditions using a tungstenxenon light source. 'Me results indicate that these water soluble polymeric micelles of ZnPP portend to be promising candidates for targeted chemotherapy as well as photodynamic therapy against superficial tumors as well as solid tumors located at light penetrable depths.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available