3.9 Article

Use of bentonite to control the release of copper from contaminated soils

Journal

AUSTRALIAN JOURNAL OF SOIL RESEARCH
Volume 45, Issue 8, Pages 618-623

Publisher

CSIRO PUBLISHING
DOI: 10.1071/SR07079

Keywords

heavy metals; soil; bentonite; clay; sorption; desorption; availability; remediation

Categories

Ask authors/readers for more resources

A decrease in release and availability of heavy metals in soil has been of worldwide interest in recent years. Bentonite is a type of expandable montmorillonite clay, and has strong sorption for heavy metals. In this work, the control of amended bentonite on the release of copper (Cu2+) from spiked soils was investigated using a batch equilibrium technique. Sorption of Cu by bentonite was pH-dependent, and could be well described using the Langmiur model. Maximum sorption capacity of the bentonite used in this study was 5.4 mg/g, which was much greater than soils reported in the literature. The extent of Cu2+ release from spiked soils was correlated with slurry concentrations, pH, and soil ageing process. In all cases, the amendment of bentonite was observed to effectively decrease the release of Cu2+ from soils. The apparent aqueous concentrations of Cu2+ released from soils devoid of bentonite treatment were 113-1160% higher than those from the soils amended with bentonite. Moreover, the magnitude of Cu2+ release decreased with increasing amount of bentonite added to soils. The bentonite added was more effective in retaining Cu2+ in sorbents for aged contaminated soils. Such enhanced retention resulting from the presence of bentonite was observed within a wide pH range from 2.5 to 7.0. Bentonite, as one of the most abundant minerals in soils, is regarded to improve the soil overall quality. The results obtained from this work provide useful information on utilisation of bentonite to control the release of heavy metals from contaminated soils.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available