4.5 Article

Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging

Journal

INTERNATIONAL JOURNAL OF WILDLAND FIRE
Volume 16, Issue 3, Pages 341-348

Publisher

CSIRO PUBLISHING
DOI: 10.1071/WF06003

Keywords

color infrared ortho image; fuel types; LiDAR; shrub height

Categories

Ask authors/readers for more resources

A fuel-type map of a predominantly shrub-land area in central Portugal was generated for a fire research experimental site, by combining airborne light detection and ranging (LiDAR), and simultaneous color infrared ortho imaging. Since the vegetation canopy and the ground are too close together to be easily discerned by LiDAR pulses, standard methods of processing LiDAR data did not provide an accurate estimate of shrub height. It was demonstrated that the standard process to generate the digital ground model (DGM) sometimes contained height values for the top of the shrub canopy rather than from the ground. Improvement of the DGM was based on separating canopy from ground hits using color infrared ortho imaging to detect shrub cover, which was measured simultaneously with the LiDAR data. Potentially erroneous data in the DGM was identified using two criteria: low vegetation height and high Normalized Difference Vegetation Index (NDVI), a commonly used spectral index to identify vegetated areas. Based on the height of surrounding pixels, a second interpolation of the DGM was performed to extract those erroneously identified as ground in the standard method. The estimation of the shrub height improved significantly after this correction, and increased determination coefficients from R-2 = 0.48 to 0.65. However, the estimated shrub heights were still less than those observed in the field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available