4.2 Review

Pharmacogenetics of warfarin: current status and future challenges

Journal

PHARMACOGENOMICS JOURNAL
Volume 7, Issue 2, Pages 99-111

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.tpj.6500417

Keywords

warfarin; vitamin K epoxide reductase complex subunit 1; VKORC1; cytochrome P450 enzyme; CYP2C9; vitamin K-dependent protein

Ask authors/readers for more resources

Warfarin is an anticoagulant that is difficult to use because of the wide variation in dose required to achieve a therapeutic effect, and the risk of serious bleeding. Warfarin acts by interfering with the recycling of vitamin K in the liver, which leads to reduced activation of several clotting factors. Thirty genes that may be involved in the biotransformation and mode of action of warfarin are discussed in this review. The most important genes affecting the pharmacokinetic and pharmacodynamic parameters of warfarin are CYP2C9 ( cytochrome P-450 2C9) and VKORC1 (vitamin K epoxide reductase complex subunit 1). These two genes, together with environmental factors, partly explain the interindividual variation in warfarin dose requirements. Large ongoing studies of genes involved in the actions of warfarin, together with prospective assessment of environmental factors, will undoubtedly increase the capacity to accurately predict warfarin dose. Implementation of pre-prescription genotyping and individualized warfarin therapy represents an opportunity to minimize the risk of haemorrhage without compromising effectiveness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available