4.4 Article

Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics

Journal

METABOLOMICS
Volume 3, Issue 1, Pages 55-67

Publisher

SPRINGER
DOI: 10.1007/s11306-006-0043-1

Keywords

metabolomics; NMR; J-resolved; metabolite extraction; sample preparation; tissue

Funding

  1. Natural Environment Research Council [NER/J/S/2002/00618] Funding Source: researchfish

Ask authors/readers for more resources

Metabolomic analysis of tissue samples can be applied across multiple fields including medicine, toxicology, and environmental sciences. A thorough evaluation of several metabolite extraction procedures from tissues is therefore warranted. This has been achieved at two research laboratories using muscle and liver tissues from fish. Multiple replicates of homogenous tissues were extracted using the following solvent systems of varying polarities: perchloric acid, acetonitrile/water, methanol/water, and methanol/chloroform/water. Extraction of metabolites from ground wet tissue, ground dry tissue, and homogenized wet tissue was also compared. The hydrophilic metabolites were analyzed using 1-dimensional (ID) H-1 nuclear magnetic resonance (NMR) spectroscopy and projections of (2)-dimensional J-resolved (p-JRES) NMR, and the spectra evaluated using principal components analysis. Yield, reproducibility, ease, and speed were the criteria for assessing the quality of an extraction protocol for metabolomics. Both laboratories observed that the yields of low molecular weight metabolites were similar among the solvent extractions; however, acetonitrile-based extractions provided poorer fractionation and extracted lipids and macromolecules into the polar solvent. Extraction using perchloric acid produced the greatest variation between replicates due to peak shifts in the spectra, while acetonitrile-based extraction produced highest reproducibility,. Spectra from extraction of ground wet tissues generated more macromolecules and lower reproducibility compared with other tissue disruption methods. The p-JRES NMR approach reduced peak congestion and yielded flatter baselines, and subsequently separated the metabolic fingerprints of different samples more clearly than by 1D NMR. Overall, single organic solvent extractions are quick and easy and produce reasonable results. However, considering both yield and reproducibility of the hydrophilic metabolites as well as recovery of the hydrophobic metabolites, we conclude that the methanol/chloroform/water extraction is the preferred method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available