4.7 Review

Relict non-glacial surfaces in formerly glaciated landscapes

Journal

EARTH-SCIENCE REVIEWS
Volume 80, Issue 1-2, Pages 47-73

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.earscirev.2006.08.002

Keywords

relict surface; glaciated landscape; denudation; blockfield; cold-based ice; nunatak

Ask authors/readers for more resources

Relict non-glacial surfaces occur within many formerly glaciated landscapes and contain important information on past surface processes and long-term landscape evolution. Relict non-glacial surfaces are distinguishable from glacial surfaces by large-scale morphologies, including rounded summits, fluvial valleys, and cryoplanation terraces and pediments, and the presence of tors, blockfields, and/or saprolites. Preservation during glaciation occurs either through coverage by non-erosive, cold-based, ice or as nunataks. Although surface morphologies and denudation rates indicate a continuous non-glacial surface history since preglacial times, relict non-glacial surfaces are dynamic features that have evolved during the Quaternary. Depending on spatial variables such as lithology, slope, regolith depth and the abundance of fine matrix and water some surfaces are denuding very slowly, while others display more rapid denudation. High spatial variability in denudation rates results in changing surface morphologies over time. Denudation rates also display high temporal variability, with much surface evolution having perhaps occurred soon after the initial onset of glaciation or during paraglacial phases. While some parts of non-glacial landscapes are currently active, others may be largely inactive relicts of past higher energy regimes. Although non-glacial surfaces are dynamic much remains to be determined regarding surface denudation rates and the magnitude of morphological changes over time. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available