4.2 Article Proceedings Paper

Mast cell stabilization limits hypoxic-ischemic brain damage in the immature rat

Journal

DEVELOPMENTAL NEUROSCIENCE
Volume 29, Issue 4-5, Pages 373-384

Publisher

KARGER
DOI: 10.1159/000105478

Keywords

astroglia; blood-brain barrier; cromolyn; endothelia; microglia

Funding

  1. EUNICE KENNEDY SHRIVER NATIONAL INSTITUTE OF CHILD HEALTH &HUMAN DEVELOPMENT [P01HD030704] Funding Source: NIH RePORTER
  2. NATIONAL INSTITUTE OF MENTAL HEALTH [R01MH054088] Funding Source: NIH RePORTER
  3. NICHD NIH HHS [HD 30704] Funding Source: Medline
  4. NIMH NIH HHS [R01 MH 54088] Funding Source: Medline

Ask authors/readers for more resources

Perinatal hypoxic-ischemic (HI) brain damage is a major cause of mortality and neurological morbidity in infants and children. Using an established model of unilateral hypoxia-ischemia in neonatal rats, the present study focused on mast cells (MCs), important regulators of inflammatory processes, as potential contributors to HI damage. MCs are present in the pia of the neonatal rat, entering the central nervous system (CNS) during cerebral development along penetrating blood vessels. Following hypoxia-ischemia, MC numbers increased dramatically in the ipsilateral (ischemic) hemisphere (p < 0.01). In animals exposed to hypoxia only, the numbers of MCs were elevated in both hemispheres to an extent equal to that observed in the contralateral hemisphere of HI animals (p < 0.05 vs. control). Within damaged areas (ipsilateral only), MCs were observed in regions of activated microglia and astroglia that characterize the ischemic hemisphere. Using a triple-label paradigm, MCs were observed along elongating blood vessels, some of which express the GLUT1 isoform of the glucose transporter protein, indicative of blood-brain barrier vessels. To determine whether MC activation has a role in HI brain damage, rat pups were treated with the MCs stabilizer, disodium cromoglycate ( cromolyn), prior to and/or following hypoxia-ischemia. The cromolyn treatment inhibited MC migration into the CNS (p < 0.05) and limited brain damage more than 50% (p < 0.01) vs. saline controls. These data support the hypothesis that MCs are key contributors to the extent of brain damage due to hypoxia-ischemia in the immature animal. Copyright (C) 2007 S. Karger AG, Basel.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available