4.6 Article

Semidefinite representations for finite varieties

Journal

MATHEMATICAL PROGRAMMING
Volume 109, Issue 1, Pages 1-26

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10107-004-0561-4

Keywords

-

Ask authors/readers for more resources

We consider the problem of minimizing a polynomial over a set defined by polynomial equations and inequalities. When the polynomial equations have a finite set of complex solutions, we can reformulate this problem as a semidefinite programming problem. Our semidefinite representation involves combinatorial moment matrices, which are matrices indexed by a basis of the quotient vector space R[x(1), . . . ,x(n) ]/I, where I is the ideal generated by the polynomial equations in the problem. Moreover, we prove the finite convergence of a hierarchy of semidefinite relaxations introduced by Lasserre. Semidefinite approximations can be constructed by considering truncated combinatorial moment matrices; rank conditions are given (in a grid case) that ensure that the approximation solves the original problem to optimality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available