4.1 Article

Complement susceptibility in glutamine deprived breast cancer cells

Journal

CELL DIVISION
Volume 2, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/1747-1028-2-20

Keywords

-

Categories

Funding

  1. Department of Defense [DAMD17-02-1-0564]
  2. NIH [R21 AI069957]
  3. NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES [R21AI069957] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Background: Membrane complement regulatory proteins (mCRPs) inhibit complement-mediated killing of human cells by human complement, a property that confers protection from complement to malignant breast cancer cells and that thwarts some immunotherapies. Metabolic mechanisms may come into play in protecting cancer cells from the complement system subsequent to relatively low levels of complement deposition. Results: In differentiating these mechanisms, two types of human breast cancer cell lines, MCF7 (adenocarcinoma) and Bcap37 (medullary carcinoma) were cell-cycle synchronized using glutamine-deprivation followed by restoration. These cells were examined for the expression of two mCRPs (CD59 and CD55), and for subsequent susceptibility to antibody-mediated complement-induced membrane damage. After glutamine restoration, MCF7 and Bcap37 cells were synchronized into the G2/M phase and an average increased expression of CD59 and CD55 occurred with a corresponding resistance to complement-mediated damage. Blocking CD59 inhibitory function with monoclonal antibody revealed that CD59 played a key role in protecting unsynchronized Bcap37 and MCF7 cancer cells from the complement membrane attack complex. Interestingly, glutamine-deprivation did not significantly affect the expression of proteins e. g., the surface level of CD59 or CD55, but did increase the susceptibility to complement-mediated killing. One possible explanation is that glutamine-deprivation may have slowed the turnover rate of mCRPs, preventing the cells from replacing pre-existing mCRPs, as they became neutralized by covalent C4b and C3b depositions. Conclusion: Taken together the findings are consistent with the conclusion that future immunotherapies should aim to achieve a highly specific and profound activation and deposition of complement as well as to disrupt the synthesis and expression of CD59 and CD55 by the cancer cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available